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Abstract
We study the propagation of plane electromagnetic waves through different systems consisting
of arrays of split rings of different orientations. Many extraordinary EM phenomena were
discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We
find a mode such that the electric field becomes elliptically polarized with a component in the
longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity ∇kω and
the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get
‘broadened’, but can possess a component perpendicular to the wavevector. The speed of light
can be real even when the product εμ is negative. Other novel properties are explored.

(Some figures in this article are in colour only in the electronic version)

The electric field of electromagnetic waves can be polarized
in different ways. For the elliptic polarization the electric
fields along two orthogonal directions are 90◦ out of phase. In
nearly all materials, such polarization is transverse in that the
electric field is perpendicular to the wavevector. Very little is
known if there exist materials such that the elliptic polarization
is longitudinal in that the field rotates between a direction
along the wavevector k and another direction perpendicular
to it. In addition the consequence of this longitudinal elliptic
polarization has not been explored.

Split-ring resonators, which consist of metallic rings with
small cuts, have recently been of interest since they can provide
negative permeability through a magnetic resonance [1]. In
a composite material, when both the permittivity ε and the
permeability μ are negative, the square of the speed of light,
which is inversely proportional to με, has a positive real part
and the loss is reduced.

In this paper we study the propagation of plane
electromagnetic waves through different split-ring systems
consisting of arrays of rings of different orientations. We find
that, for one of the modes, the square of the velocity has a

positive real part even when με is negative; in addition, the
electric field becomes longitudinally elliptically polarized.

For ordinary materials, the direction of energy flow, given
by the Poynting vector, is along the direction of the wavevector.
For the left-handed material, the focus is on the frequency
region where the direction of the Poynting vector is opposite to
the wavevector. For a longitudinal elliptically polarized wave,
the Poynting vector can have a component perpendicular to the
wavevector even though the group velocity is parallel to the
wavevector. Other novel behaviors are also observed. We next
discuss our results in detail.

The behavior of an EM wave in a material is governed
by its electric and magnetic susceptibilities. In ordinary
materials, the magnetization (electric polarization) is caused
by an external magnetic (electric) field. However, it was
recently shown [2, 3] that the split-ring system is bianisotropic
and magnetoelectric—an external electric (magnetic) field can
cause a magnetic (electric) polarization, that is:

M = α̂mB + α̂E, P = β̂eE + β̂B, (1)

where β̂ = −α̂T generally. Materials that are both
ferromagnetic and ferroelectric at the same time exhibit this
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Figure 1. Illustration of the orientations of the three rings with the
three cuts (left); the longitudinal elliptic polarization (E+) and the
transverse polarization (E−) of the two normal modes found (right).

type of phenomena. Interest in this type of materials has
recently been revived [4] due to improved sophistication
in creating multiphase nanostructure materials. A larger
magnetoelectric coefficient was observed.

Whereas the magnetoelectric effects in multiferroic
materials decreases drastically above the spin wave frequency,
if the rings are small enough the magnetoelectric effect in the
split rings can persist up to much higher frequencies. A new
aspect of the split-ring structure is that the magnetoelectric
coefficients α̂, β̂ are off-diagonal tensors.

While there has been much discussion of the propagation
of EM waves through magnetoelectric materials where the
magnetoelectric coefficients are isotropic and diagonal [5, 6],
very little work was done to study the physics in anisotropic
systems corresponding to the split-ring system. The off-
diagonal anisotropic magnetoelectric effect of the split-ring
structure is interesting in its own right.

From Maxwell’s equation we get −∇×μ−1∇×E−4π∇×
α̂∂t E/c = ∂2

t εE/c2−4πβ̂∇×∂t E/c, where μ̂−1 = 1−4πα̂m ,
ε̂ = 1 + 4πβ̂e. We look for plane wave solutions proportional
to exp −i(k · r − ωt) and obtain

k× μ̂−1k×E−4πωk× α̂E/c = −ω2ε̂E/c2 −4πωβ̂k×E/c.
(2)

We next discuss the solution of this equation for some
examples of different split-ring systems.
(I) Three-ring medium. We first discuss the case with three
types of rings with cuts along three different axes. A possible
realization is illustrated in figure 1. The single split rings
can also be replaced by double split rings or planar spirals,
which offer us a large degree of freedom to choose the material
parameters (ε, μ, α, etc). Each set of rings can have different
‘polarities’, depending on whether the cut of the ring is along
the + or the − direction. We have considered systems with
different polarities and found the physics to be similar. Here
we consider the case when the polarities of the three kinds of
rings are the same. This system is non-conventional because
the magnetoelectric coefficients α̂, β̂ are off-diagonal tensors.
Their diagonal components and some of the off-diagonal
components are zero. Systems similar to this have been studied
experimentally by the Boeing group where additional arrays of
wires along three orthogonal directions are also present [1].
Our calculation can be applied to such situations.

For a single split ring placed on the xy plane with a cut
opened at φ = 0, previous studies [2, 7, 8]3 show that an
electric field Ey generates a magnetic moment mz , while a
magnetic field Hz generates an electric dipole moment py . For
the ring structure illustrated in figure 1, it is straightforward to
find the magnetoelectric tensor as

α̂ = α

[ 0 0 1
1 0 0
0 1 0

]
, β̂ = −α

[ 0 1 0
0 0 1
1 0 0

]
.

For example, for a ring in the yz plane with a gap along the y
direction, an electric field Ez will produce a magnetic moment
mx . This corresponds to the first row of the α̂ matrix. In the
same way, the second and third rows of this matrix come from
rings in the xz and xy planes with gaps along the z and x axis,
respectively. After some straightforward algebra, we find that

k × α̂ − β̂k× = α

[ 0 ky −kx

−ky 0 kz

kx −kz 0

]
= αq×

where the vector q = −(kz, kx , ky). Equation (2) thus becomes

μ−1[kk · −k2]E − 4πωαq × E/c = −ω2εE/c2. (3)

One can construct three mutually perpendicular vectors as
follows. Define p = q×k which is perpendicular to both q and
k. Then construct the component of k that is perpendicular to
q: k′ = k−q(q ·k)/q2. In this basis E = Ekek′ +Eqeq+E pep;
equation (3) becomes 	̂E = 0 where

	̂ =
[ k ′2 + x kqk ′ γ k0k

kqk ′ k2
q + x 0

−k0kγ 0 +x

]
, (4)

x = k2
0 − k2, kq = eq · k, k0 = (με)1/2ω/c, γ = 4πα

√
μ/ε.

After some algebra, we find that

det(	) = k2
0[x2 + (γ k)2(k2

q + x)].

The condition det(	) = 0 leads to a quadratic equation in x
and we obtain the dispersion

k2
0 = k2 − 0.5((γ k)2 ± [(γ k)4 − 4(γ kkq)

2]1/2). (5)

We next explore the implication of this result.
The physics is particularly simple for kq = 0, or close to a

resonance when γ becomes large and the term proportional to
kq can be neglected. In that case from equation (4) the electric
field along q is not coupled to the other two components. For
example, the condition kq = 0 is obtained if k is along one
of the axis, e.g. kx = ky = 0, the directions k′, q, p then
correspond to the directions z, −x, y, respectively. In this limit,
the dispersion for the two normal modes is given by ω = vk
with

v2 = c2/(με), v2 = c2[1/(με) − (4πα)2/ε2]. (6)

The first mode corresponds to a − sign in equation (5)
and is one that we normally expect. The electric field is

3 This paper calculates a series of constants Am . In the cgs units used in this
paper, Lm = 0.25(Am+1 + Am−1)/c2.
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Figure 2. The transverse and longitudinal Poynting vectors Sp

(dotted line) and Sk (dashed line) normalized by c|E p |2/(4π) and
the square of the velocity (solid line) as a function of the frequency
normalized by the resonance frequency. R3/V = 0.03, ε = −2,
the conductor resistance 2π Rrc = 0.1Z0, where
Z0 = (μ0/ε0)

1/2 = 377 	 is the impedance of the vacuum.

transverse and polarized along q . This is illustrated by the
field E− in figure 1. The second mode in equation (6)
behaves quite anomalously and is the key discovery of the
present work. Because α possesses a significant imaginary
part [9]4, the factor −(4πα)2/ε2 provides for an increase in
the group velocity if ε is real. In most experiments there is
a background of metallic wires. We assume that this is the
dominant contribution to the dielectric constant ε, which can
then become negative throughout the frequency regime that we
consider. Even when με is negative, the second factor can
render the real part of ω2 positive close to resonance. This
can be seen in figure 2 where we have evaluated (v/c)2 using
the value of α we recently calculated [8, 7, 9] (see footnotes 3
and 4). On both sides of the resonance where μ changes sign,
the real part of v2 remain positive. Very close to the resonance,
the real part of α becomes large. Even though the product με

is positive, Re[v2] can be less than zero, as is shown in figure 2.
For the anomalous mode (second mode in equation (6)),

we get from equation (4) that E = Ekek + E pep; Ek/E p =
−γ k/k0. Because γ possesses a significant imaginary part
the two components are 90◦ out of phase; the electric field is
longitudinally elliptically polarized in the plane formed by p
and k! This is illustrated by E+ in figure 1. The magnetic field
B = k × Ec/ω = ck E peq/ω is transverse.

In general, for a non-zero kq , from equation (4), we get
Eq = −Ek′ kqk ′/(k2

q +k2
0 −k2) and E p = −Ek′ k0kγ /(k2

0 −k2).
The electric field has a component in the k–q plane and another

4 The susceptibilities are given by αm = − f χ0π/(2c2), β = icαm/(ωR),
βe = −χ0π f/(Rω)2 and α = −β, where f = R3/V is the filling factor,
χ−1

0 = (L0+L1/2)[1−(ωr/ω)2]−1.5irc/ω, Lm , L ′
m , Cm and C ′

m are the mth
Fourier component of the self-and mutual inductances and capacitances given
in [6]. We have used a more sophisticated ‘Clausius–Mosotti’ approximation
of μ = (1 + 8παm/3)/(1 − 4παm/3) for the composite. ωr = [(1/C1 +
irc)/(2L0 + L1)]0.5, V is the volume per ring and rc is the resistance of the
ring. As can be seen βyz is mostly imaginary. For the dielectric constant, we
have assumed that there is a background produced by metallic wires of volume
fraction f ′ with dielectric constant εm so that the total dielectric constant is of
the order of ε = f ′εm + 4π fβe with the dominant contribution from εm .

component that is 90◦ out of phase in a direction perpendicular
to the k–q plane. Thus it is also longitudinally elliptically
polarized.

In previous studies a key question is the direction of
energy flow, which is given by the Poynting vector S =
Re[cE × H∗/(4π)]. Kamenetskii [10] has shown that, for
bianisotropic media, Poynting’s theorem has the continuity
equation form and energy transport is possible if the envelope
function of the wavepackets satisfy certain conditions. Because
of the longitudinal elliptic polarization, both E and H now have
components E‖, H‖; E⊥, H⊥ along and perpendicular to k, the
cross-product of E and H can have contributions Re[E‖ H ∗

⊥],
Re[E⊥H ∗

‖ ] perpendicular to k. When damping is included, E‖
(E⊥) and H⊥ (H‖) contain contributions that are out of phase
with each other and thus give rise to a non-zero component Sp

of the Poynting vector that is perpendicular to the wavevector.
This becomes significant close to the resonance when the real
part of α becomes large, as is illustrated in figure 2 where we
show the transverse and the longitudinal components Sp and
Sk .

Photonic crystals and anisotropic materials exhibit
negative refraction because the group velocity vg = ∇kω is
not parallel to the wavevector. The perpendicular direction
of energy flow discussed here does not come from the group
velocity, which is along the wavevector for the example
discussed here. Differentiating equation (5) we get 2k0vg/c =
2kek − γ 2kek ± [γ 4k3ek − 2γ 2(kk2

qek + k2kqe′)]/[(γ k)4 −
4(γ kkq)

2]1/2, where e′ = −(kz + ky, kx + kz, kx + ky)/k. For
kq = 0, the coefficient of the e′ term is zero and the group
velocity is along the wavevector.

Our effect is present only in the presence of damping,
when there is no exact theorem that requires the Poynting
vector to be parallel to the group velocity. Usually we expect
a smearing in the direction of energy flow in the presence of
damping. Here we find the presence of additional terms in the
perpendicular direction.
(II) Two-ring medium. We next consider the case with arrays
of two types of rings, one with rings in the xz plane and the
other one with rings in the xy plane; the cuts of both rings are
along the x axis.

For the present case μzz = μyy = μ, μxx = 1, αyz =
−αzy = α0 and βzy = −βyz = −α0. Experimental systems
often include an array of wires along the x direction [1]. The
orientation of the rings is as illustrated in figure 1 where the
rings in the yz plane are now absent. We have studied two
cases: (1) the dielectric constants are diagonal, so that along
the x axis they are different, εxx = ε, εyy = εzz = 1
and (2) the dielectric constants are diagonal and of the same
value ε. We find that in the expression for the dispersion α

occurs in combination with the first power of ε for case (1)
but with the second power of ε for case (2). To illustrate the
essential physics, we focus on case (1) in this paper, where
the anisotropic dielectric constant can come from additional
contributions from metallic wires that are present in many
experimental systems.

The solution for this case is mathematically similar to case
(I) with three types of rings. The details of this will thus be left

3
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to a longer publication. We obtain5

k2
0 = k2

z + k2
y + k2

xμ
−1, k2

0 = v2(k2
z + k2

y) + k2
x/μ (7)

where v2 = v2
0 − α′2/ε. k0 = ω/c, α′ = 4πα and v2

0 =
1/(με) is the group velocity when the magnetoelectric effect
is absent. We have verified this result by a direct brute force
computation of the eigenvalue equation in the original basis
using a symbolic manipulation program to handle the algebra.

For the second mode, the velocity v now contains a term
−α′2/ε. Since α possesses a significant imaginary part, if ε is
positive, this term can increase the speed of light and make the
speed real even if μ is negative. If ε is negative, this term will
now lower the speed of light, the opposite to case (I)!

For the first mode, the electric field is along eq which is
perpendicular to both k and ex . For the second mode, the
electric field is perpendicular to eq ∝ (0,−kz, ky): E =
Ekek + E pep, where ep = ek × eq:

E p/Ek = [k2
x(ε − 1)/k2 + 1]k0/[qα′ − k0(ε − 1)pxkx/(kp)].

The electric field now has a longitudinal component along the
direction of the wavevector. Because α is mostly imaginary the
longitudinal and the transverse components of the electric field
are now out of phase: the electric field is elliptically polarized.

The new kind of longitudinal elliptic polarization has other
unexpected consequences. For example, we find by full-
wave numerical computations that when a ‘TE’-polarized two-
dimensional (2D) Gaussian beam6 with the E field parallel to
the interface is incident from air on the two-ring medium, the
refracted wave inside the medium splits into two beams7, as
depicted in figure 3(a). One of the beams corresponds to the
normal mode with the E field perpendicular to the k vector,
as schematically illustrated in figure 3(c). The other beam
corresponds to the anomalous mode with E field rotating on
the 
x–
k plane, as schematically shown in figure 3(b).

The anomalous refraction can be understood from the
boundary conditions that the tangential components of E and
H are continuous. Because the anomalous refracted beam is
longitudinal elliptically polarized with a E component lying
on the x–k plane, a TE-polarized incident wave with the E field
along x will generate a longitudinal elliptically polarized wave
with a y component; the continuity of the total tangential E can
only be satisfied if an additional wave is present also with its E
field in the yz plane.

In conclusion, we find that, for a collection of split rings,
because of its anisotropic off-diagonal magnetoelectric tensor,
many interesting new phenomena remain to be discovered,
with or without additional arrays of wires. Examples of
these are (a) onset of transmission even for a negative μ, or
no transmission even when both ε and μ are negative, (2)

5 The magnetic susceptibility is now anisotropic. By direct computation,
k × μ̂−1k × q = −(k2

z + k2
y + k2

x /μ)q, k × μ−1k × k = 0, k × μ−1k × p =
−(k2/μ)p.
6 For the definition of a two-dimensional Gaussian beam, see, for
example [11].
7 In our calculations, we first expand the 2D Gaussian beam into plane waves,
then solve the Maxwell equations for each plane wave component, and finally
sum up the results for all components.

Figure 3. (a) Wave reflection/refraction as a 2D 2λ-wide Gaussian
beam with a TE polarization ( 
E||
x ) on a two-ring medium with
εxx = 10, εyy = εzz = 2, μxx = 1, μyy = μzz = 1.1,
α0 = 5i/(4π Z0). Expanded views of (b) the anomalous beam with E
vector rotating on the 
x–
k plane and (c) the normal beam with E
perpendicular to 
k.

perpendicular transport of light and (3) anomalous behaviors in
refraction and reflection. This paper provides for directions of
the conditions under which such phenomena can be observed.
Similar results can be obtained for the case with only one type
of ring and will be discussed in a fuller publication.
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